Karar Ağaçlarında Random Forest Tekniği ile Sınıflandırma: Örnek R Uygulaması

Python ile yaptığımız Random Forest örneğini bu yazımızda R ile yapacağız.

Çalışma Dizinini Ayarlama, Veri Setini İndirme

Veri setini buradan indirebilirsiniz.

setwd('Calisma_Dizininiz')
dataset = read.csv('SosyalMedyaReklamKampanyası.csv', encoding = 'UTF-8')

Veri Seti Görünüm

Veriyi Anlamak

Yukarıda gördüğümüz veri seti beş nitelikten oluşuyor. Veri seti bir sosyal medya kayıtlarından derlenmiş durumda. KullaniciID müşteriyi belirleyen eşsiz rakam, Cinsiyet, Yaş, Tahmini Gelir yıllık tahmin edilen gelir, SatinAldiMi ise belirli bir ürünü satın almış olup olmadığı, hadi lüks araba diyelim. Bu veri setinde kolayca anlaşılabileceği gibi hedef değişkenimiz SatinAldiMi’dir. Diğer dört nitelik ise bağımsız niteliklerdir. Bu bağımsız niteliklerle bağımlı nitelik (satın alma davranışının gerçekleşip gerçekleşmeyeceği) tahmin edilecek.

Bağımsız değişkenlerin hepsini analizde kullanmayacağız. Analiz için kullanacağımız nitelikleri seçelim:

dataset = dataset[3:5]

3,4 ve 5’inci nitelikleri alacağımız için parantez içine 3:5 dedik. Yeni veri setimizi de görelim:

Hedef niteliğimiz SatinAldiMi niteliğini factor yapalım.

dataset\$SatinAldiMi = factor(dataset\$SatinAldiMi, levels = c(0, 1))

Veri Setini Eğitim ve Test Olarak Ayırmak

Aynı sonuçları almak için random değeri belirlemek için bir sayı belirliyoruz. 123. split fonksiyonu ile hangi kayıtların eğitim hangi kayıtların test grubunda kalacağını damgalıyoruz. Sonra bu damgalara göre ana veri setinden yeni eğitim ve test setlerini oluşturuyoruz.

library(caTools)
set.seed(123)
split = sample.split(dataset\$SatinAldiMi, SplitRatio = 0.75)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)

Yaş ile maaş aynı ölçekte olmadığı için bu nitelikleri normalizasyona tabi tutuyoruz.

training_set[-3] = scale(training_set[-3])
test_set[-3] = scale(test_set[-3])

Normalizasyon sonrasında veri setimizdeki dönüşümü görelim:

Evet şimdi taş ve maaş üzerinde işlem yapabiliriz artık.

Random Forest Modeli Oluşturmak ve Eğitmek

R’ın randomForest paketi içindeki randomForest fonksiyonunu model oluşturmak için kullanacağız.

library(randomForest)
classifier = randomForest(x = training_set[-3],
                          y = training_set\$SatinAldiMi,
                          ntree = 10)

İlk parametremiz nitelikler matrisi (bağımsız değişkenler) x, ikinci parametre bağımlı değişken y (SatinAldiMi), üçüncü parametre ntree, kaç tane ağaç kullanılacağı.

Test Seti ile Tahmin Yapmak

Eğittiğimiz modeli ve test setini kullanarak tahmin yapalım ve bakalım modelimiz ne kadar isabetli sınıflandırma yapıyor.

y_pred = predict(classifier, newdata = test_set[-3])
y_pred

2 4 5 9 12 18 19 20 22 29 32 34 35 38 45 46 48 52 66 69 74 75 82 84 .... 
0 0 0 0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  1 ....

Hata Matrisini Oluşturmak

cm = table(test_set[, 3], y_pred)
cm
 y_pred
   0  1
 0 58 6
 1 9 27

Toplam 15 hatalı sınıflandırma yapmış Random Forest.

Eğitim Seti Grafik

library(ElemStatLearn)
set = training_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Yas', 'TahminiMaas')
y_grid = predict(classifier, newdata = grid_set)
                 plot(set[, -3],
                 main = 'Random Forest Sınıflandırma (Eğitim seti)',
                 xlab = 'Yaş', ylab = 'Maaş',
                 xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))

Test Seti Grafik

library(ElemStatLearn)
set = test_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Yas', 'TahminiMaas')
y_grid = predict(classifier, newdata = grid_set, type = 'class')
                 plot(set[, -3], main = 'Random Forest Sınıflandırma (Test seti)',
                 xlab = 'Yaş', ylab = 'Maaş',
                 xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))

Yazar Hakkında
Toplam 173 yazı
Erkan ŞİRİN
Erkan ŞİRİN
2014'ten beri hem akademik alanda hem de sektörde pratik anlamda büyük veri ve veri bilimi ile ilgili çalışmalar yürütmektedir. Büyük veri ve veri bilimi ile ilgili birçok kurum ve şirkete danışmanlık ve eğitimler vermekte, projeler icra etmektedir. Çalışma alanları: büyük veri platformlarının kurulum ve yönetimi, büyük veri üzerinde makine öğrenmesi, olağan dışılık ve sahtecilik tespiti, akan veri işleme ve veri hazırlama sürecidir.
Yorumlar (Yorum yapılmamış)

Bir cevap yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

×

Bir Şeyler Ara